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I. INTRODUCTION
Hydraulic transients are critical design factors in a large 

number of fluid systems from automotive fuel injection to 
water supply, transmission, and distribution systems. Today, 
long pipelines transporting fluids over great distances are so 
common, and the high-velocity water distribution systems are 
also increased. Mechanically sophisticated fluid control 
devices, including many types of pumps and valves, coupled 
with increasingly sophisticated electronic sensors and controls, 
provide the potential for complex system behaviour. Huge 
amount of money has been spent for such complex systems.   

In any complex piping system, always, there is a need to 
adjust the flow continously for which the operating conditions 
of valves and pumps are to be changed. Transient flow occurs 
in a system whenever the flow in the system is suddenly 
changed. It is always accompanied by high or low pressure 
peaks. Pipe system designers assume that transients tend to 
decay slowly and the computation of transient analysis is 
carried out on the basis of classical water hammer equations. 
However, discrepancy is observed between the actual and 
computed pressures. The difference between the observed and 
calculated pressure characteristics during dynamic processes is 
called energy dissipation [9].

It has been found in the recent researches that transient 
analysis overdesigns the piping systems [7]. The pipe wall 
elastic behaviour damps the hydraulic transient much faster 
than that computed results. Thus, the importance of wall 
friction and energy losses during transient has lead to the 
development of an appropriate model for energy dissipation 
[8]. The main objective of this study is to create an appropriate 
model for energy dissipation during transients and calibrate it 
with experimental data. Stages of study are: 

1. Creating a numerical model in MATLAB for the
classical continuity and momentum equations.

2. Validating the results using Surge2000 for the
transient analysis.

3. Incorporating the variable wave celerity in the
continuity equation and diffusive term in the
momentum equation and observe its relevance in
predicting the wave attenuation.

4. Modifying the existing model to reduce the
dispersive errors.

II. CREATION OF CLASSICAL TRANSIENT MODEL
The classical water hammer equations for analysing 

transients in piping systems is given by (1) and (2) [6]. 
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where Q- Fluid discharge (cumecs), H-Pressure head of the 
pipe(m), f- Darcy’s Weisbach friction factor, A-Cross 
sectional area of pipe (m2), g=Acceleration due to gravity 
(m/s2), c=Wave celerity (m/s), D=Pipe diameter (m), t=Time 
(seconds), x=Abscissa along the centre line of the pipe (m). 

Governing equations for representing transient flow in pipes 
(continuity and momentum) are quasi-linear, hyperbolic, 
partial differential equations. Several numerical methods are 
used for solution of these equations. Among these methods, 
finite difference methods have been utilized very extensively. 
The numerical solutions, based on the finite differences, 
provide us with the values of the dependent variables at 
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discrete points which are known as grid points. The present 
study uses an explicit scheme-MacCormack approach- for the 
solution of these partial differential equations, because of its 
simplicity and easiness in programming [14]. MacCormack 
method consists of two steps; a  step which is 
followed by a  step [3]:

1. Forward difference  step followed by
backward difference  (on odd time intervals). 

2. Backward difference  step followed by
forward difference  (on even time intervals). 
III. MODIFICATION OF CLASSICAL TRANSIENT MODEL

BY
The classical transient model was modified to include the 

convective terms. While deriving the continuity and 
momentum equations using the basic theory of conservation of 
mass and energy, the convective terms were neglected as its 
value was small and facilitates the solution using the method 
of characteristics [11]. In order to represent complete 
dissipation phenomena, the convective terms are included in 
the classical set of equations and thus the governing equations 
are rewritten as (3) and (4). 

∂H
∂t

 + 
Q
A
∂H
∂x

 + 
c2

gA
∂Q
∂x

 = 0  3

∂Q
∂t

 + 
Q
A
∂Q
∂x

 + gA
∂H
∂x

 + 
f

2DA
Q Q  = 0  (4)

IV. INCORPORATION OF VARIABLE WAVE CELERITY INTO
THE CONTINUITY EQUATION

For a given pipe diameter and liquid, the pressure wave 
celerity is constant and is calculated using (5).  

=

K
ρ

1+ K.D
5

E.e
where K= Bulk modulus of elasticity of the fluid (Pa), =
Density of the fluid (kg/m3), D=Diameter of the pipe (m), 
e=Thickness of the pipe wall (m), E= Young’s modulus of 
elasticity of the pipe wall material. 

But when transient occur the liquid and the pipe wall will
be prone to compression. Thus, pipe diameter and cross 
sectional area will be changing with time which will in turn 
alter the wave speed. According to Mitosek and Symkiewicz 
[11], in every cycle of head variation, one can distinguish four 
segments having various curvatures. This variation can be 
related to the pressure wave phase. In one wave cycle, there 
are four time intervals of different lengths. Generally, it is 
observed that the time of the pressure increase is shorter than 
the time of the pressure decrease. This difference seems to be 
related to the pressure-wave amplitude, because it disappears 
with time as the amplitude decreases. Although these intervals 
have different lengths, their sum, being the total wave period, 
is constant with time. It is evident that the asymmetry 
observed in head variation must be related to the pressure 
wave celerity. Therefore instead of considering ‘c’ as a 
constant, c(x, t) should be used [11].

Taking into account the varying gradients of function head 
variation one finds that in the phase of compression, when the 
stream of liquid slows down, the wave travels at a speed less 
than the average one [c(x, t) < c], whereas in the phase of 
decompression, when the stream accelerates, the wave travels 
at a speed greater than the average one [c(x, t) > c] [11].

In the derivation of classical Joukovsky (Korteweg) 
formula (6), perfect elastic behaviour of the liquid and pipe 
material was assumed [15].
∆p=Uρc                                                                            (6)

where ∆p is the increment of pressure, c is the wave 
speed  ρ is the density of fluid and U is the velocity.

If real bodies are considered, during the compression of 
liquid in the pipe due to immediate valve closure, a fraction of 
energy, denoted as Ediss, is lost because of dissipation [4].
Therefore, as per the principle of conservation of energy, 
kinetic energy of the flowing water, Ekin turns into the elastic 
energy of the water, El, and the elastic energy of the pipe 
material, Ew and the energy lost due to dissipation, Ediss.

Ekin=Ediss+El+Ew            (7)

where 

Ekin=ρgA ∆xU2

2g
(8)
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      (10)

Assuming that the dissipated energy constitutes a part of 
the elastic energy of the liquid and the pipe wall, this fraction 
can be denoted using the coefficient .

=
Ediss

El+EW
 (11)

In the phase of decompression, the energy stored due to the 
elasticity of the liquid and pipe material is reconverted into the 
kinetic energy of the flowing water and the Ediss term becomes 
negative and in turn becomes negative.

For preliminary evaluation of the modified continuity 
equation, a very simple algorithm for the wave celerity 
correction is assumed, namely, taking into account the value 
of the current pressure H(t) and the value of the pressure 
gradient  ∂H

∂t
, the wave period is divided into four parts. The 

applied correction process is carried out as follows:
1. If and , then .

2. If and , then .

3. If and , then .

4. If and , then 
where H(x,0) is the hydrostatic pressure in the pipe when

the state of rest is reached, whereas c is the standard wave 
celerity. The above presented formulas hold for advancing 
time and for 0≤x≤L. Thus, variable wave celerity was defined 
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for varying pipe length and time. Thus, the continuity equation 
is modified by incorporating variable wave celerity instead of 
the constant wave celerity. 

∂H
∂t

+
Q
A
∂H
∂x

+
[c(x,t)]2

gA
∂Q
∂x

=0  (12)

V. INCORPORATION OF DIFFUSIVE TERM 
THE MOMENTUM

By adjusting the values of numerical parameters such as the 
time step, Δt, the space interval, Δx, or the weighting 
parameters, it is possible to obtain a remarkably better match 
of the results of computation and observation. This well-
known effect is related to the numerical diffusion generated by 
the applied method of solution. The positive role of the 
numerical diffusion has suggested a way of improvement of 
the solution algorithm for some problems described by the 
hyperbolic equations. Such an approach, known as the pseudo 
viscosity method [2], was proposed by von Neumann and 
Richtmyer [12]. It deals with the introduction of a diffusive 
term into the energy or dynamic equation. This term, having 
smoothing properties, provides control the solution near 
discontinuity when non-dissipative methods are applied. Its 
particular form relates the intensity of the generated diffusion 
to the wave steepness, ensuring that this extra term acts 
strongly only locally, becoming insignificant far away from 
discontinuity. This extra term will have a coefficient, vG [11].

vG=vM+vT+vV+vF       (13)

where vM-coefficient of molecular diffusion of momentum,
vT-coefficient of turbulent diffusion of momentum, vV-
coefficient of second viscosity, vF -coefficient of diffusion 
related to the dissipation at the front of the pressure wave. 

The momentum equation will be then modified into (14)
[11].
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VI. MODIFICATION OF NUMERICAL MODEL TO
REMOVE

In order to remove the dispersive errors in MacCormack 
scheme, a procedure developed by Chaudhary [5] was used to 
dampen numerical instabilities. This procedure, smoothes 
regions of large gradients while leaving smooth areas 
relatively undisturbed. The values of the variables at the new 
time computed by MacCormack method are modified using 
the following algorithm: 

i =
Hi+1-2Hi+Hi-1

Hi+1 +2 Hi + Hi-1
    (15)

i+1
2
= max i+1, i (16)

in which Φ is dissipation constant used to regulate the 
amount of artificial viscosity. At nodes near to the boundaries 
a one-side finite difference approximation is used.

i=
Hi+Hi-1

Hi + Hi-1
(17)

i=
Hi+1-Hi

Hi+1 + Hi
    (18)

The computed dependent variable is then modified as 
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f refer to both the dependent variables, H and Q. The 
above procedure is equivalent to adding second-order 
dissipative terms to the original governing equations [1]. 

VII. NUMERICAL RESULTS

The developed base model was tested for the experiment 
done by Mitosek and Symkiewicz for the steel pipe [10]. The 
experimental installation is specified in Fig. 1. It is composed 
of a straight pipeline (1), pressurized tank (2) and a ball valve 
(4) mounted at the end of the pipe. The valve was closed 
manually. In this experimental study, the valve closure time is
measured by the time recorder with an accuracy of 0.001s, 
ranged from 0.018 to 0.025s. The pressure was recorded by 
means of a measuring system consisting of strain gauges (5), 
extensometer amplifier (6) and a computer (7) with AD/DA 
(20MHz) card. The input data for the second trial of the base 
model is provided in Table 1. The result of the steady state 
analysis is plotted in Fig. 2. 

Fig. 1. Experimental Installation [10]

TABLE I. INPUT DATA FOR STEEL PIPE [10]

Length(m) 72
Inside diameter(m) 0.042

Thickness of pipe wall(m) 0.0033
Roughness height (m) 0.00008
Wave velocity (m/s) 1245.0
Initial pressure head

(m) 51.00

Initial velocity(m/s) 0.410

Fig. 2. Steady state analysis for the steel pipe
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There is a constant decrease in head from the reservoir till 
the valve end. The obtained steady state head at valve end is
51.11m.  

The classical transient model or the base model was 
applied to the experimental data for steel pipe [10]. Since the 
valve used for the experiment was of ball type, the valve 
characteristic for ball valve was fed to the model (Fig. 3).The 
valve closure time was taken as 0.021seconds which is the 
average of the measured time of closure (0.018 to 
0.025seconds). The simulation time was taken as 12 seconds. 
The corresponding head variation at the valve is given in Fig. 
4. The peak value of pressure head at the valve closure
gradually decreased as the time progresses. However, from the 
figure the time at which the head attains a stable value cannot 
be interpreted. Thus, it can be ascertained that the head attains 
stable value at a time greater than the provided simulation 
time, i.e., 12 seconds. This result is then compared with that of 
experimental results and is shown in Fig. 5. Though peak head 
is matching well at the first crest, drastic difference is 
observed between computed and experimental results 
afterwards. The reason for the discrepancy may be either due 
to the shorter valve closure time (i.e. time of closure < ( )) 
or due to the omission of certain phenomena which was 
actually present in the system. However, a strong damping of 
pressure head is observed for the experimental result.

Fig. 3. Valve characteristic curve

Fig. 4. Computed pressure head at valve for the steel pipe data [10] 

Fig. 5. Comparison between base model and experimental results at valve end 

In order to study the discrepancy between the results (Fig. 5), 
the base model was modified to include the convective terms. 
Reference [13] reported its applicability (i.e. addition of 
convective terms) to a wide range of transient flow problems. 
Transient analysis with the convective term ((3) and (4)) was 
carried out for the experimental installation provided in Fig. 1. 
The head variation at the valve end for the modified base 
model is provided in the Fig. 6. It shows only a marginal 
reduction upto 0.008%. 

Fig. 6. Head at valve end for steel pipe using modified base model 

Fig. 7 Comparison between modified base model results and experimental 
formulation for steel pipe 
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For evaluating the ability of the modified model to 
determine the transient head observed in the actual scenario, a 
comparison between the computed and the experimental 
results was done and is presented in Fig. 7. From the Fig. 7, 
one can see a huge difference between the computed transient 
results and experimental results. The discrepancy so observed 
indicates the occurrence of strong energy dissipation in the 
pipelines. A strong damping of the pressure wave is observed 
in the experimental results. It may be seen that the amplitude
of experimental pressure curve decreases very quickly and the 
wave front get smoothened. It is found that, the pipes will be 
more prone to wave damping than that of computed using the 
classical water hammer equations with convective terms. This 
may be due to the fact that the classical water hammer 
equation cannot take into account the pipe wall elasticity and 
the subsequent energy dissipative mechanisms. This facilitates 
the need for the use of a different approach for analysing 
transient heads accurately.

In order to check the accuracy of the modified base model,
transient analysis for the system was even carried out using 
Surge2000 software. In Fig. 8, a comparison was done 
between the transient analysis results from the modified base 
model and that obtained from the software. The results 
obtained from the model shows more damping compared with 
the software results. This may be due to the addition of 
convective term in the modified base model. However, both 
the results show huge discrepancy from the actual 
experimental data.

Fig. 8. Comparison between experimental results and transient results at 
the valve end from modified base model and from Surge2000 

For increasing the ability of the model to predict the head 
variations accurately with the experimental data, modifications 
have to be done to the basic water hammer equations. The idea 
proposed in [11] was to relate the elastic behaviour of both the 
water and the wall of the pipe to the continuity equation via 
the variable pressure wave celerity. Also, the diffusive term 

was incorporated into the momentum equation to induce 
smoothing characteristics of the water hammer wave.The 
same approach is used in this study.

In the derivation of classical Joukovsky (Korteweg) 
formula for pressure increment (6), perfect elastic behaviour 
of the liquid and pipe material were assumed [15]. If real 
bodies are considered, during the compression of liquid in the 
pipe due to immediate valve closure, a fraction of energy, 
denoted as Ediss, is lost because of dissipation. Assuming that 
the dissipated energy constitutes a part of the elastic energy of 
the liquid and the pipe wall, this fraction can be denoted using 
the coefficient β [11].

The energy dissipation coefficient ( ) was calculated using 
(11). The value of  at the first time state was obtained as 
0.0843.The variable wave celerity was then calculated for 
each Δt. The corresponding variation in head at the valve is 
plotted in Fig. 9. Spurious oscillations are observed and the 
program collapses. The computed wave celerity at the valve 
end is provided in Fig. 10. The wave celerity ranged from 
1489.888m/s to 1067.35 m/s with the median as 1220.707 m/s. 
The energy dissipation coefficient versus time is also plotted 
shown in Fig. 11. The mean value of was obtained as 
0.056898. The global diffusion coefficient (vG) was taken as 
600m2/s [11]. Equations (12) and (14) were taken as the 
governing equations for the modified model.

It is found that, the computed pressure head goes on 
increasing instead of reducing and attaining a stable value at 
the end of simulation time. This may be the result of 
numerical dispersion in the MacCormack scheme [1]. But, 
these dispersive errors cause high-frequency oscillations near 
steep gradient. Thus, the developed model would have to be 
revised to reduce these numerical dispersive errors.

Fig. 9 Head variation at the valve end 
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Fig. 10 Wave speed variation at the valve end 

Fig. 11 . Variation of energy dissipation coefficient, β along the time axis

In order to remove the dispersive errors, a procedure 
developed by Chaudhry [5] was used to dampen the numerical
instabilities. This procedure smoothes regions of large 
gradients while leaving smooth areas relatively undisturbed 
[1]. 

The method for removing the numerical dispersive error 
was carried out and the value of dissipation constant to 
regulate the amount of artificial viscosity was taken as 6 
corresponding to the numerical diffusion coefficient as 
600m2/s [11]. The energy dissipation coefficient was taken as 
0.05 corresponding to the mean obtained in the computed 
results. The obtained results are provided in Fig. 12.

From the Fig.12, it is clear that the head peak goes on 
decreasing after the time of valve closure and attains a stable 
head at some later point of time. It is clear from the figure that 
the stable head is obtained at the time of six seconds. For 
comparison, the computed results by the proposed method 
were superimposed on the experimental result values and the 
computed result values. In contrast to the transient results 
obtained earlier from the modified base model and that from 

software (Fig. 8), the computed results (Fig. 13) from the 
proposed method show good agreement with the experimental 
results. Although the results have numerical oscillations, the 
peak of the head is approximately equal to that of the 
experimental value. 

Fig. 12 Head at valve end using energy dissipation model 

Fig. 13. Comparison between experimental and energy dissipation model 

Assuming the experimental results to be true 
representation of the actual scenario, absolute mean 
percentage error was done for each computation and the 
results obtained are presented in Table II. For the steel pipe, 
transient analysis results from the modified base model 
showed lesser error compared to the Surge2000 software 
results. The proposed method showed 13.91% error in 
computation from the actual value. 

TABLE II. E

STEEL

Transient from modified 
base model 61.66%

Transient from 
Surge2000 73.69%

Proposed Method 13.91%
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VIII. CONCLUSIONS
The current paper focuses on creating an appropriate 

model for energy dissipation during transient flow. The 
modified base model results were compared with the analysis 
results from the Surge2000 software for validation. It was 
found that the modified base model results damped faster than 
that computed from the software. Thus, it was found that the 
convective terms in the water hammer equations, generally 
neglected in the transient analysis were found necessary to 
better analyse the piping system. The equations were modified 
for incorporating variable wave celerity into the continuity 
equation and the diffusive term into the momentum equation. 
In the results obtained, large oscillation appeared and its 
magnitude increased with time. It was clear from the results 
that numerical dispersive errors occurred. Once the dispersive 
error was eliminated by introducing the artificial viscosity a
better result was obtained in the present study owing to the 
fact that MacCormack scheme is dispersive in nature although 
dissipation-free.

An error analysis was carried out for the computation. It 
was found that the developed energy dissipation model gave 
better results than the transient analysis results from the 
Surge2000 software and classical waterhammer equations. 
The developed model not only predicts the first pressure hikes, 
but also the subsequent pressure peaks towards the stable 
values at the end of simulation. Thus, the developed model 
was able to predict the energy dissipation mechanism in a 
better way during transient. 
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